Skip to content

HyperStreamline

vtk-examples/Cxx/VisualizationAlgorithms/HyperStreamline



Description

This is an example of hyperstreamlines. The data is from a point load applied to semi-infinite domain. Compare this image to TensorEllipsoids that used tensor ellipsoids to visualize the same data. Notice that there is less clutter and more information available from the hyperstreamline visualization.

Other languages

See (Python), (PythonicAPI)

Question

If you have a question about this example, please use the VTK Discourse Forum

Code

HyperStreamline.cxx

#include <vtkActor.h>
#include <vtkCamera.h>
#include <vtkConeSource.h>
#include <vtkHyperStreamline.h>
#include <vtkImageData.h>
#include <vtkImageDataGeometryFilter.h>
#include <vtkLogLookupTable.h>
#include <vtkNamedColors.h>
#include <vtkNew.h>
#include <vtkOutlineFilter.h>
#include <vtkPointLoad.h>
#include <vtkPolyDataMapper.h>
#include <vtkProperty.h>
#include <vtkRenderWindow.h>
#include <vtkRenderWindowInteractor.h>
#include <vtkRenderer.h>

int main(int, char*[])
{
  // Create the RenderWindow, Renderer and interactive renderer.
  //
  vtkNew<vtkNamedColors> colors;

  vtkNew<vtkRenderer> ren1;
  vtkNew<vtkRenderWindow> renWin;
  renWin->SetMultiSamples(0);
  renWin->AddRenderer(ren1);

  vtkNew<vtkRenderWindowInteractor> iren;
  iren->SetRenderWindow(renWin);

  // set VTK_INTEGRATE_BOTH_DIRECTIONS 2

  //
  // Generate tensors.
  vtkNew<vtkPointLoad> ptLoad;
  ptLoad->SetLoadValue(100.0);
  ptLoad->SetSampleDimensions(20, 20, 20);
  ptLoad->ComputeEffectiveStressOn();
  ptLoad->SetModelBounds(-10, 10, -10, 10, -10, 10);
  ptLoad->Update();

  // Generate hyperstreamlines.
  vtkNew<vtkHyperStreamline> s1;
  s1->SetInputData(ptLoad->GetOutput());
  s1->SetStartPosition(9, 9, -9);
  s1->IntegrateMinorEigenvector();
  s1->SetMaximumPropagationDistance(18.0);
  s1->SetIntegrationStepLength(0.1);
  s1->SetStepLength(0.01);
  s1->SetRadius(0.25);
  s1->SetNumberOfSides(18);
  s1->SetIntegrationDirectionToIntegrateBothDirections();
  s1->Update();

  // Map hyperstreamlines.
  vtkNew<vtkLogLookupTable> lut;
  lut->SetHueRange(.6667, 0.0);

  vtkNew<vtkPolyDataMapper> s1Mapper;
  s1Mapper->SetInputConnection(s1->GetOutputPort());
  s1Mapper->SetLookupTable(lut);
  s1Mapper->SetScalarRange(ptLoad->GetOutput()->GetScalarRange());

  vtkNew<vtkActor> s1Actor;
  s1Actor->SetMapper(s1Mapper);

  vtkNew<vtkHyperStreamline> s2;
  s2->SetInputData(ptLoad->GetOutput());
  s2->SetStartPosition(-9, -9, -9);
  s2->IntegrateMinorEigenvector();
  s2->SetMaximumPropagationDistance(18.0);
  s2->SetIntegrationStepLength(0.1);
  s2->SetStepLength(0.01);
  s2->SetRadius(0.25);
  s2->SetNumberOfSides(18);
  s2->SetIntegrationDirectionToIntegrateBothDirections();
  s2->Update();

  vtkNew<vtkPolyDataMapper> s2Mapper;
  s2Mapper->SetInputConnection(s2->GetOutputPort());
  s2Mapper->SetLookupTable(lut);
  s2Mapper->SetScalarRange(ptLoad->GetOutput()->GetScalarRange());

  vtkNew<vtkActor> s2Actor;
  s2Actor->SetMapper(s2Mapper);

  vtkNew<vtkHyperStreamline> s3;
  s3->SetInputData(ptLoad->GetOutput());
  s3->SetStartPosition(9, -9, -9);
  s3->IntegrateMinorEigenvector();
  s3->SetMaximumPropagationDistance(18.0);
  s3->SetIntegrationStepLength(0.1);
  s3->SetStepLength(0.01);
  s3->SetRadius(0.25);
  s3->SetNumberOfSides(18);
  s3->SetIntegrationDirectionToIntegrateBothDirections();
  s3->Update();

  vtkNew<vtkPolyDataMapper> s3Mapper;
  s3Mapper->SetInputConnection(s3->GetOutputPort());
  s3Mapper->SetLookupTable(lut);
  s3Mapper->SetScalarRange(ptLoad->GetOutput()->GetScalarRange());

  vtkNew<vtkActor> s3Actor;
  s3Actor->SetMapper(s3Mapper);

  vtkNew<vtkHyperStreamline> s4;
  s4->SetInputData(ptLoad->GetOutput());
  s4->SetStartPosition(-9, 9, -9);
  s4->IntegrateMinorEigenvector();
  s4->SetMaximumPropagationDistance(18.0);
  s4->SetIntegrationStepLength(0.1);
  s4->SetStepLength(0.01);
  s4->SetRadius(0.25);
  s4->SetNumberOfSides(18);
  s4->SetIntegrationDirectionToIntegrateBothDirections();
  s4->Update();

  vtkNew<vtkPolyDataMapper> s4Mapper;
  s4Mapper->SetInputConnection(s4->GetOutputPort());
  s4Mapper->SetLookupTable(lut);
  s4Mapper->SetScalarRange(ptLoad->GetOutput()->GetScalarRange());

  vtkNew<vtkActor> s4Actor;
  s4Actor->SetMapper(s4Mapper);

  // Plane for context.
  //
  vtkNew<vtkImageDataGeometryFilter> g;
  g->SetInputData(ptLoad->GetOutput());
  g->SetExtent(0, 100, 0, 100, 0, 0);
  g->Update(); // for scalar range

  vtkNew<vtkPolyDataMapper> gm;
  gm->SetInputConnection(g->GetOutputPort());
  gm->SetScalarRange(g->GetOutput()->GetScalarRange());

  vtkNew<vtkActor> ga;
  ga->SetMapper(gm);

  // Create outline around data.
  //
  vtkNew<vtkOutlineFilter> outline;
  outline->SetInputData(ptLoad->GetOutput());

  vtkNew<vtkPolyDataMapper> outlineMapper;
  outlineMapper->SetInputConnection(outline->GetOutputPort());

  vtkNew<vtkActor> outlineActor;
  outlineActor->SetMapper(outlineMapper);
  outlineActor->GetProperty()->SetColor(colors->GetColor3d("Black").GetData());

  // Create cone indicating application of load.
  //
  vtkNew<vtkConeSource> coneSrc;
  coneSrc->SetRadius(0.5);
  coneSrc->SetHeight(2);

  vtkNew<vtkPolyDataMapper> coneMap;
  coneMap->SetInputConnection(coneSrc->GetOutputPort());

  vtkNew<vtkActor> coneActor;
  coneActor->SetMapper(coneMap);
  coneActor->SetPosition(0, 0, 11);
  coneActor->RotateY(90);
  coneActor->GetProperty()->SetColor(colors->GetColor3d("Tomato").GetData());

  vtkNew<vtkCamera> camera;
  camera->SetFocalPoint(0.113766, -1.13665, -1.01919);
  camera->SetPosition(-29.4886, -63.1488, 26.5807);
  camera->SetViewAngle(24.4617);
  camera->SetViewUp(0.17138, 0.331163, 0.927879);
  camera->SetClippingRange(1, 100);

  ren1->AddActor(s1Actor);
  ren1->AddActor(s2Actor);
  ren1->AddActor(s3Actor);
  ren1->AddActor(s4Actor);
  ren1->AddActor(outlineActor);
  ren1->AddActor(coneActor);
  ren1->AddActor(ga);
  ren1->SetBackground(colors->GetColor3d("SlateGray").GetData());
  ren1->SetActiveCamera(camera);

  renWin->SetSize(640, 480);
  renWin->SetWindowName("HyperStreamline");

  renWin->Render();
  iren->Start();

  return EXIT_SUCCESS;
}

CMakeLists.txt

cmake_minimum_required(VERSION 3.12 FATAL_ERROR)

project(HyperStreamline)

find_package(VTK COMPONENTS 
  CommonColor
  CommonCore
  CommonDataModel
  FiltersGeneral
  FiltersGeometry
  FiltersModeling
  FiltersSources
  ImagingHybrid
  InteractionStyle
  RenderingContextOpenGL2
  RenderingCore
  RenderingFreeType
  RenderingGL2PSOpenGL2
  RenderingOpenGL2
)

if (NOT VTK_FOUND)
  message(FATAL_ERROR "HyperStreamline: Unable to find the VTK build folder.")
endif()

# Prevent a "command line is too long" failure in Windows.
set(CMAKE_NINJA_FORCE_RESPONSE_FILE "ON" CACHE BOOL "Force Ninja to use response files.")
add_executable(HyperStreamline MACOSX_BUNDLE HyperStreamline.cxx )
  target_link_libraries(HyperStreamline PRIVATE ${VTK_LIBRARIES}
)
# vtk_module_autoinit is needed
vtk_module_autoinit(
  TARGETS HyperStreamline
  MODULES ${VTK_LIBRARIES}
)

Download and Build HyperStreamline

Click here to download HyperStreamline and its CMakeLists.txt file. Once the tarball HyperStreamline.tar has been downloaded and extracted,

cd HyperStreamline/build

If VTK is installed:

cmake ..

If VTK is not installed but compiled on your system, you will need to specify the path to your VTK build:

cmake -DVTK_DIR:PATH=/home/me/vtk_build ..

Build the project:

make

and run it:

./HyperStreamline

WINDOWS USERS

Be sure to add the VTK bin directory to your path. This will resolve the VTK dll's at run time.