ImageSeparableConvolution
Repository source: ImageSeparableConvolution
Description¶
Read in a binary image and convolve it with a separable kernel. The input and output are displayed.
Other languages
See (Cxx)
Question
If you have a question about this example, please use the VTK Discourse Forum
Code¶
ImageSeparableConvolution.py
#!/usr/bin/env python3
from pathlib import Path
# noinspection PyUnresolvedReferences
import vtkmodules.vtkInteractionStyle
# noinspection PyUnresolvedReferences
import vtkmodules.vtkRenderingOpenGL2
from vtkmodules.vtkCommonColor import vtkNamedColors
from vtkmodules.vtkCommonCore import vtkFloatArray
from vtkmodules.vtkIOImage import vtkImageReader2Factory
from vtkmodules.vtkImagingCore import vtkImageCast
from vtkmodules.vtkImagingGeneral import vtkImageSeparableConvolution
from vtkmodules.vtkInteractionStyle import vtkInteractorStyleImage
from vtkmodules.vtkRenderingCore import (
vtkImageActor,
vtkRenderer,
vtkRenderWindow,
vtkRenderWindowInteractor
)
def get_program_parameters():
import argparse
description = 'ImageSeparableConvolution.'
epilogue = '''
'''
parser = argparse.ArgumentParser(description=description, epilog=epilogue,
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('file_name', help='The binary image file name to use e.g. Yinyang.png.')
args = parser.parse_args()
return args.file_name
def main():
fn = get_program_parameters()
fp = Path(fn)
file_check = True
if not fp.is_file():
print(f'Missing image file: {fp}.')
file_check = False
if not file_check:
return
colors = vtkNamedColors()
# Read the image.
reader: vtkImageReader2Factory = vtkImageReader2Factory().CreateImageReader2(str(fp))
reader.file_name = fp
# Alternatively, use vtkPNGReader.
# reader = vtkPNGReader(file_name = fp)
reader.Update()
x_kernel = vtkFloatArray(number_of_tuples=5, number_of_components=1)
x_kernel.SetValue(0, 1)
x_kernel.SetValue(1, 1)
x_kernel.SetValue(2, 1)
x_kernel.SetValue(3, 1)
x_kernel.SetValue(4, 1)
convolution_filter = vtkImageSeparableConvolution(x_kernel=x_kernel)
original_actor = vtkImageActor()
reader >> original_actor.mapper
convolution_cast_filter = vtkImageCast()
convolution_cast_filter.SetOutputScalarTypeToUnsignedChar()
convolution_actor = vtkImageActor()
reader >> convolution_filter >> convolution_cast_filter >> convolution_actor.mapper
# Define the viewport ranges (x_min, y_min, x_max, y_max).
original_viewport = (0.0, 0.0, 0.5, 1.0)
convolution_viewport = (0.5, 0.0, 1.0, 1.0)
# Setup the renderers.
original_renderer = vtkRenderer(viewport=original_viewport, background=colors.GetColor3d('CornflowerBlue'))
original_renderer.AddActor(original_actor)
original_renderer.ResetCamera()
convolution_renderer = vtkRenderer(viewport=convolution_viewport, background=colors.GetColor3d('SteelBlue'))
convolution_renderer.AddActor(convolution_actor)
convolution_renderer.ResetCamera()
render_window = vtkRenderWindow(size=(600, 300), window_name='ImageSeparableConvolution')
render_window.AddRenderer(original_renderer)
render_window.AddRenderer(convolution_renderer)
render_window_interactor = vtkRenderWindowInteractor()
style = vtkInteractorStyleImage()
render_window_interactor.interactor_style = style
render_window_interactor.render_window = render_window
render_window.Render()
render_window_interactor.Initialize()
render_window_interactor.Start()
if __name__ == '__main__':
main()