CollisionDetection
Repository source: CollisionDetection
Description¶
This examples uses vtkCollisionDetectionFilter to find the intersection between a fixed (solid white) and moving (red wireframe) sphere. The animation places the moving sphere some distance from the fixed sphere and moves the moving sphere until it contacts the fixed sphere.
Three collision modes are available and can be set as the first argument on the command line.
- All contacts (0) finds all the contacting cell pairs with two points per collision.
- First contact (1) quickly find the first contact point.
- Half contacts (2) finds all the contacting cell pairs with one points per collision.
The animation pauses between each frame. The total animation should be 3 seconds.
Three videos on the VTK Examples Project youtube playlist show each of the collision modes.
Question
If you have a question about this example, please use the VTK Discourse Forum
Code¶
CollisionDetection.py
#!/usr/bin/env python3
import time
from dataclasses import dataclass
# noinspection PyUnresolvedReferences
import vtkmodules.vtkInteractionStyle
# noinspection PyUnresolvedReferences
import vtkmodules.vtkRenderingFreeType
# noinspection PyUnresolvedReferences
import vtkmodules.vtkRenderingOpenGL2
from vtkmodules.vtkCommonColor import vtkNamedColors
from vtkmodules.vtkCommonMath import vtkMatrix4x4
from vtkmodules.vtkCommonTransforms import vtkTransform
from vtkmodules.vtkFiltersModeling import vtkCollisionDetectionFilter
from vtkmodules.vtkFiltersSources import vtkSphereSource
from vtkmodules.vtkInteractionWidgets import (
vtkTextRepresentation,
vtkTextWidget
)
from vtkmodules.vtkRenderingCore import (
vtkActor,
vtkPolyDataMapper,
vtkRenderWindow,
vtkRenderWindowInteractor,
vtkRenderer,
vtkTextActor,
vtkTextProperty, vtkProperty
)
def get_program_parameters():
import argparse
description = 'Collision detection.'
epilogue = '''
This examples uses vtkCollisionDetectionFilter to find the intersection between a
fixed (solid white) and moving (red wireframe) sphere.
The animation places the moving sphere some distance from the fixed sphere and
moves the moving sphere until it contacts the fixed sphere.
Three collision modes are available and can be set as the first argument on the command line.
1. All contacts (0) finds all the contacting cell pairs with two points per collision.
2. First contact (1) quickly find the first contact point.
3. Half contacts (2) finds all the contacting cell pairs with one points per collision.
'''
parser = argparse.ArgumentParser(description=description, epilog=epilogue,
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('contactMode', nargs='?', default=0, type=int, help='Contact mode 0 (default), 1, or 2.')
args = parser.parse_args()
return args.contactMode
def main():
contact_mode = get_program_parameters()
# Define colors
colors = vtkNamedColors()
sphere0 = vtkSphereSource(radius=0.29, center=(0.0, 0, 0), phi_resolution=31, theta_resolution=31)
sphere1 = vtkSphereSource(radius=0.3, center=(0.0, 0, 0), phi_resolution=30, theta_resolution=30)
matrix1 = vtkMatrix4x4()
transform0 = vtkTransform()
collide = vtkCollisionDetectionFilter(box_tolerance=0.0, cell_tolerance=0.0, number_of_cells_per_node=2)
collide.SetTransform(0, transform0)
collide.input_connection = (0, sphere0.output_port)
collide.input_connection = (1, sphere1.output_port)
collide.SetMatrix(1, matrix1)
if contact_mode == 0:
collide.collision_mode = vtkCollisionDetectionFilter.VTK_ALL_CONTACTS
elif contact_mode == 1:
collide.collision_mode = vtkCollisionDetectionFilter.VTK_FIRST_CONTACT
else:
collide.collision_mode = vtkCollisionDetectionFilter.VTK_HALF_CONTACTS
collide.GenerateScalarsOn()
# Visualize
actor1_property = vtkProperty(backface_culling=True, diffuse_color=colors.GetColor3d('Tomato'),
representation=Property.Representation.VTK_WIREFRAME)
mapper1 = vtkPolyDataMapper(scalar_visibility=False)
mapper1.input_connection = collide.GetOutputPort(0)
actor1 = vtkActor(mapper=mapper1, user_transform=transform0, property=actor1_property)
mapper2 = vtkPolyDataMapper()
mapper2.input_connection = collide.GetOutputPort(1)
actor2 = vtkActor(mapper=mapper2, user_matrix=matrix1)
actor2.property.backface_culling = True
actor3_property = vtkProperty(color=colors.GetColor3d('Black'), line_width=3.0)
mapper3 = vtkPolyDataMapper(input_connection=collide.contacts_output_port,
resolve_coincident_topology=Mapper.ResolveCoincidentTopology.VTK_RESOLVE_POLYGON_OFFSET)
actor3 = vtkActor(mapper=mapper3, property=actor3_property)
renderer = vtkRenderer(use_hidden_line_removal=True, background=colors.GetColor3d('Gray'))
renderer.AddActor(actor1)
renderer.AddActor(actor2)
renderer.AddActor(actor3)
render_window = vtkRenderWindow(size=(640, 480), window_name='CollisionDetection')
render_window.AddRenderer(renderer)
interactor = vtkRenderWindowInteractor()
interactor.render_window = render_window
# Move the first object
num_steps = 100
dx = 1.0 / float(num_steps) * 2.0
transform0.Translate(-num_steps * dx - .3, 0.0, 0.0)
render_window.Render()
renderer.active_camera.Azimuth(-60)
renderer.active_camera.Elevation(45)
renderer.active_camera.Dolly(1.2)
render_window.Render()
for i in range(0, num_steps):
transform0.Translate(dx, 0.0, 0.0)
renderer.ResetCameraClippingRange()
render_window.Render()
if collide.number_of_contacts > 0:
text_property = vtkTextProperty(color=colors.GetColor3d('White'), bold=True, italic=False, shadow=True,
font_size=16, justification=TextProperty.Justification.VTK_TEXT_CENTERED)
s = f'{collide.GetCollisionModeAsString()}, the number of contact cells is {collide.GetNumberOfContacts():d}'
text_positions = get_text_positions([s],
justification=TextProperty.Justification.VTK_TEXT_CENTERED,
width=0.5, height=0.1)
text_actor = vtkTextActor(input=s,
text_scale_mode=vtkTextActor.TEXT_SCALE_MODE_NONE,
text_property=text_property)
# Create the text representation. Used for positioning the text actor.
text_representation = vtkTextRepresentation(enforce_normalized_viewport_bounds=True)
text_representation.position_coordinate.value = text_positions[s]['p']
text_representation.position2_coordinate.value = text_positions[s]['p2']
# Create the text widget, setting the default renderer and interactor.
text_widget = vtkTextWidget(representation=text_representation, text_actor=text_actor,
default_renderer=renderer,
interactor=interactor, selectable=False)
text_widget.On()
break
# The total animation time is 3 seconds
time.sleep(3.0 / num_steps)
renderer.ResetCamera()
render_window.Render()
interactor.Start()
# In Field Data there will be an array named 'ContactCells'.
# This array indexes contacting cells (e.g.) index 10 of array 0
# points to a cell (triangle) which contacts/intersects a cell
# at index 10 of array 1.
# You can directly obtain these, see GetContactCells(int i)
# in the documentation.
# print(collide.GetOutput(0))
# print(collide.GetOutput(1))
def get_text_positions(names, justification=0, vertical_justification=0, width=0.96, height=0.1):
"""
Get viewport positioning information for a list of names.
:param names: The list of names.
:param justification: Horizontal justification of the text, default is left.
:param vertical_justification: Vertical justification of the text, default is bottom.
:param width: Width of the bounding_box of the text in screen coordinates.
:param height: Height of the bounding_box of the text in screen coordinates.
:return: A list of positioning information.
"""
# The gap between the left or right edge of the screen and the text.
dx = 0.02
width = abs(width)
if width > 0.96:
width = 0.96
y0 = 0.01
height = abs(height)
if height > 0.9:
height = 0.9
dy = height
if vertical_justification == TextProperty.VerticalJustification.VTK_TEXT_TOP:
y0 = 1.0 - (dy + y0)
dy = height
if vertical_justification == TextProperty.VerticalJustification.VTK_TEXT_CENTERED:
y0 = 0.5 - (dy / 2.0 + y0)
dy = height
name_len_min = 0
name_len_max = 0
first = True
for k in names:
sz = len(k)
if first:
name_len_min = name_len_max = sz
first = False
else:
name_len_min = min(name_len_min, sz)
name_len_max = max(name_len_max, sz)
text_positions = dict()
for k in names:
sz = len(k)
delta_sz = width * sz / name_len_max
if delta_sz > width:
delta_sz = width
if justification == TextProperty.Justification.VTK_TEXT_CENTERED:
x0 = 0.5 - delta_sz / 2.0
elif justification == TextProperty.Justification.VTK_TEXT_RIGHT:
x0 = 1.0 - dx - delta_sz
else:
# Default is left justification.
x0 = dx
# For debugging!
# print(
# f'{k:16s}: (x0, y0) = ({x0:3.2f}, {y0:3.2f}), (x1, y1) = ({x0 + delta_sz:3.2f}, {y0 + dy:3.2f})'
# f', width={delta_sz:3.2f}, height={dy:3.2f}')
text_positions[k] = {'p': [x0, y0, 0], 'p2': [delta_sz, dy, 0]}
return text_positions
@dataclass(frozen=True)
class Mapper:
@dataclass(frozen=True)
class ColorMode:
VTK_COLOR_MODE_DEFAULT: int = 0
VTK_COLOR_MODE_MAP_SCALARS: int = 1
VTK_COLOR_MODE_DIRECT_SCALARS: int = 2
@dataclass(frozen=True)
class ResolveCoincidentTopology:
VTK_RESOLVE_OFF: int = 0
VTK_RESOLVE_POLYGON_OFFSET: int = 1
VTK_RESOLVE_SHIFT_ZBUFFER: int = 2
@dataclass(frozen=True)
class ScalarMode:
VTK_SCALAR_MODE_DEFAULT: int = 0
VTK_SCALAR_MODE_USE_POINT_DATA: int = 1
VTK_SCALAR_MODE_USE_CELL_DATA: int = 2
VTK_SCALAR_MODE_USE_POINT_FIELD_DATA: int = 3
VTK_SCALAR_MODE_USE_CELL_FIELD_DATA: int = 4
VTK_SCALAR_MODE_USE_FIELD_DATA: int = 5
@dataclass(frozen=True)
class TextProperty:
@dataclass(frozen=True)
class Justification:
VTK_TEXT_LEFT: int = 0
VTK_TEXT_CENTERED: int = 1
VTK_TEXT_RIGHT: int = 2
@dataclass(frozen=True)
class VerticalJustification:
VTK_TEXT_BOTTOM: int = 0
VTK_TEXT_CENTERED: int = 1
VTK_TEXT_TOP: int = 2
@dataclass(frozen=True)
class Property:
@dataclass(frozen=True)
class Interpolation:
VTK_FLAT: int = 0
VTK_GOURAUD: int = 1
VTK_PHONG: int = 2
VTK_PBR: int = 3
@dataclass(frozen=True)
class Representation:
VTK_POINTS: int = 0
VTK_WIREFRAME: int = 1
VTK_SURFACE: int = 2
if __name__ == '__main__':
main()